Foundry Edgelron 2402CF Installation Guide

=
FOUNDRY
NETWORKS
2100 Gold Street
P.O. Box 649100
San Jose, CA 95164-9100
Tel 408.586.1700
Fax 408.586.1900
www.foundrynetworks.com

February 2003

Copyright © 2003 Foundry Networks, Inc. All rights reserved.
No part of this work may be reproduced in any form or by any means - graphic, electronic or mechanical, including photocopying, recording, taping or storage in an information retrieval system - without prior written permission of the copyright owner.

The trademarks, logos and service marks ("Marks") displayed herein are the property of Foundry or other third parties. You are not permitted to use these Marks without the prior written consent of Foundry or such appropriate third party.

Foundry Networks, BigIron, Fastlron, IronView, JetCore, NetIron, Serverlron, Turbolron, IronWare, Edgelron, the Iron family of marks and the Foundry Logo are trademarks or registered trademarks of Foundry Networks, Inc. in the United States and other countries.

F-Secure is a trademark of F-Secure Corporation. All other trademarks mentioned in this document are the property of their respective owners.

Compliances

FCC - Class A

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to Subpart B of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user, at his own expense, will be required to take whatever measures may be required to correct the interference. You are cautioned that changes or modifications not expressly approved by the party responsible for compliance could void your authority to operate the equipment.
You may use unshielded twisted-pair (UTP) cable for RJ-45 connections-Category 3 or greater for 10 Mbps connections, Category 5 for 100 Mbps connections and Category 5 or 5e for 1000 Mbps connections. Use 50/125 or $62.5 / 125$ micron multimode fiber optic cable, or 9/125 micron single-mode cable, for SFP transceiver connections.

Warnings: 1. Wear an anti-static wrist strap or take other suitable measures to prevent electrostatic discharge when handling this equipment.
2. When connecting this switch to a power outlet, connect the field ground lead on the tri-pole power plug to a valid earth ground line to prevent electrical hazards.

EC Conformance Declaration - Class A

Contact Foundry Networks at:
Foundry Networks Inc.
2100 Gold Street
P.O. Box 649100

San Jose, CA 95164-9100
This information technology equipment complies with the requirements of the Council Directive 89/336/EEC on the Approximation of the laws of the Member States relating to Electromagnetic Compatibility and 73/23/EEC for electrical equipment used within certain voltage limits and the Amendment Directive 93/

68/EEC. For the evaluation of the compliance with these Directives, the following standards were applied:

RFI Emission: • Limit class A according to EN 55022:1998

- Limit class A for harmonic current emission according to EN 61000-3-2/1995
- Limitation of voltage fluctuation and flicker in low-voltage supply system according to EN 61000-3-3/1995

Immunity: - Product family standard according to EN 55024:1998

- Electrostatic Discharge according to EN 61000-4-2:1995 (Contact Discharge: $\pm 4 \mathrm{kV}$, Air Discharge: $\pm 8 \mathrm{kV}$)
- Radio-frequency electromagnetic field according to EN 61000-4-3:1996 (80-1000 MHz with 1 kHz AM 80\% Modulation: $3 \mathrm{~V} / \mathrm{m}$)
- Electrical fast transient/burst according to EN 61000-4-4:1995 (AC/DC power supply: $\pm 1 \mathrm{kV}$, Data/Signal lines: $\pm 0.5 \mathrm{kV}$)
- Surge immunity test according to EN 61000-4-5:1995 (AC/DC Line to Line: $\pm 1 \mathrm{kV}, \mathrm{AC} / \mathrm{DC}$ Line to Earth: $\pm 2 \mathrm{kV}$)
- Immunity to conducted disturbances, Induced by radio-frequency fields: EN 61000-4-6:1996 (0.15-80 MHz with 1 kHz AM 80\% Modulation: $3 \mathrm{~V} / \mathrm{m}$)
- Power frequency magnetic field immunity test according to EN 61000-4-8:1993 (1 A/m at frequency 50 Hz)
- Voltage dips, short interruptions and voltage variations immunity test according to EN 61000-4-11:1994 (>95\% Reduction @10 ms, 30\% Reduction @500 ms, >95\% Reduction @ 5000 ms)
LVD: • EN 60950 (A1/1992; A2/1993; A3/1993; A4/1995; A11/1997)
Warning: Do not plug a phone jack connector in the RJ-45 port. This may damage this device. Les raccordeurs ne sont pas utilisé pour le systéme téléphonique!

Industry Canada－Class A

This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus as set out in the interference－causing equipment standard entitled＂Digital Apparatus，＂ICES－003 of the Department of Communications．
Cet appareil numérique respecte les limites de bruits radioélectriques applicables aux appareils numériques de Classe A prescrites dans la norme sur le matériel brouilleur：＂Appareils Numériques，＂NMB－003 édictée par le ministère des Communications．

Japan VCCI Class A

この装置は，情報処理装置等電波障害自主規制協議会（VCCI）の基準 に基づくクラス A 情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ず るよう要求されることがあります。

Taiwan BSMI Class A

> 警告使用者：這是甲類的資訊產品，在居住的環境中使用時，可能會造成射頻干擾，在這種情況下，使用者會被要求探取某些適當的對策。

Australia AS／NZS 3548 （1995）－Class A

Contact Foundry Networks at：
Foundry Networks Inc．
2100 Gold Street
P．O．Box 649100
San Jose，CA 95164－9100

Safety Compliance

Warning: Fiber Optic Port Safety

CLASS I LASER DEVICE

When using a fiber optic port, never look at the transmit laser while it is powered on. Also, never look directly at the fiber TX port and fiber cable ends when they are powered on.

Avertissment: Ports pour fibres optiques - sécurité sur le plan optique

DISPOSITIF LASER DE CLASSE I

Ne regardez jamais le laser tant qu'il est sous tension. Ne regardez jamais directement le port TX (Transmission) à fibres optiques et les embouts de câbles à fibres optiques tant qu'ils sont sous tension.

Warnhinweis: Faseroptikanschlüsse - Optische Sicherheit

LASERGERÄT DER KLASSE I

Niemals ein Übertragungslaser betrachten, während dieses eingeschaltet ist. Niemals direkt auf den Faser-TX-Anschluß und auf die Faserkabelenden schauen, während diese eingeschaltet sind.

Underwriters Laboratories Compliance Statement

Important! Before making connections, make sure you have the correct cord set. Check it (read the label on the cable) against the following:

Operating Voltage	Cord Set Specifications
120 Volts UL Listed/CSA Certified Cord Set	
	Minimum 18 AWG
	Type SVT or SJT three conductor cord
	Maximum length of 15 feet
	Parallel blade, grounding type attachment plug rated 15 A, 125 V
240 Volts (Europe only)	Cord Set with H05VV-F cord having three conductors with minimum diameter of 0.75 mm
	IEC-320 receptacle
	Male plug rated 10 A, 250 V

The unit automatically matches the connected input voltage. Therefore, no additional adjustments are necessary when connecting it to any input voltage within the range marked on the rear panel.

Wichtige Sicherheitshinweise (Germany)

1. Bitte lesen Sie diese Hinweise sorgfältig durch.
2. Heben Sie diese Anleitung für den späteren Gebrauch auf.
3. Vor jedem Reinigen ist das Gerät vom Stromnetz zu trennen. Verwenden Sie keine Flüssigoder Aerosolreiniger. Am besten eignet sich ein angefeuchtetes Tuch zur Reinigung.
4. Die Netzanschlu ßsteckdose soll nahe dem Gerät angebracht und leicht zugänglich sein.
5. Das Gerät ist vor Feuchtigkeit zu schützen.
6. Bei der Aufstellung des Gerätes ist auf sicheren Stand zu achten. Ein Kippen oder Fallen könnte Beschädigungen hervorrufen.
7. Die Belüftungsöffnungen dienen der Luftzirkulation, die das Gerät vor Überhitzung schützt. Sorgen Sie dafür, daß diese Öffnungen nicht abgedeckt werden.
8. Beachten Sie beim Anschluß an das Stromnetz die Anschlußwerte.
9. Verlegen Sie die Netzanschlußleitung so, daß niemand darüber fallen kann. Es sollte auch nichts auf der Leitung abgestellt werden.
10. Alle Hinweise und Warnungen, die sich am Gerät befinden, sind zu beachten.
11. Wird das Gerät über einen längeren Zeitraum nicht benutzt, sollten Sie es vom Stromnetz trennen. Somit wird im Falle einer Überspannung eine Beschädigung vermieden.
12. Durch die Lüftungsöffnungen dürfen niemals Gegenstände oder Flüssigkeiten in das Gerät gelangen. Dies könnte einen Brand bzw. elektrischen Schlag auslösen.
13. Öffnen sie niemals das Gerät. Das Gerät darf aus Gründen der elektrischen Sicherheit nur von authorisiertem Servicepersonal geöffnet werden.
14. Wenn folgende Situationen auftreten ist das Gerät vom Stromnetz zu trennen und von einer qualifizierten Servicestelle zu überprüfen:
a. Netzkabel oder Netzstecker sind beschädigt.
b. Flüssigkeit ist in das Gerät eingedrungen.
c. Das Gerät war Feuchtigkeit ausgesetzt.
d. Wenn das Gerät nicht der Bedienungsanleitung entsprechend funktioniert oder Sie mit
Hilfe dieser Anleitung keine Verbesserung erzielen.
e. Das Gerät ist gefallen und/oder das Gehäuse ist beschädigt.
f. Wenn das Gerät deutliche Anzeichen eines Defektes aufweist.
15. Zum Netzanschluß dieses Gerätes ist eine geprüfte Leitung zu verwenden. Für einen Nennstrom bis 6 A und einem Gerätegewicht größer 3 kg ist eine Leitung nicht leichter als H05VV-F, 3G, $0.75 \mathrm{~mm}^{2}$ einzusetzen.

Der arbeitsplatzbezogene Schalldruckpegel nach DIN 45635 Teil 1000 beträgt 70 $\mathrm{dB}(\mathrm{A})$ oder weniger.

Contents

Chapter 1
About This Guide 1-1
Audience 1-1
Nomenclature 1-1
How to Get Help 1-1
Foundry Networks Technical Support 1-2
Web Access 1-2
E-mail Access 1-2
Telephone Access 1-2
Warranty Coverage 1-2
Related Publications 1-2
Chapter 2
About the Switch 2-1
Overview 2-1
Switch Architecture 2-2
Management Options 2-2
Description of Hardware 2-4
RJ-45 Ports 2-4
Port Status LEDs 2-5
Power Supply Receptacle 2-7
Features and Benefits 2-8
Connectivity 2-8
Performance 2-9
Management 2-9
Chapter 3
Network Planning 3-1
Introduction to Switching 3-1
Application Example 3-2
Connectivity Rules 3-2
February 2003 © 2003 Foundry Networks, Inc. vii
1000 Mbps Gigabit Ethernet Collision Domain 3-2
Application Notes 3-4
Chapter 4
Installing the Switch 4-1
Selecting a Site 4-1
Equipment Checklist 4-2
Package Contents 4-2
Optional Rack-Mounting Equipment 4-2
Mounting 4-3
Rack Mounting 4-3
Desktop or Shelf Mounting 4-4
Connecting to a Power Source 4-5
Chapter 5
Making Network Connections 5-1
Connecting Network Devices 5-1
Twisted-Pair Devices 5-1
Cabling Guidelines 5-1
Connecting to PCs, Servers, Hubs and Switches 5-2
Wiring Closet Connections 5-3
Fiber Optic Devices 5-5
Appendix A
Troubleshooting A-1
Diagnosing Switch Indicators A-1
Power and Cooling Problems A-2
Installation A-2
In-Band Access A-2
Appendix B
Cables B-1
Specifications B-1
Twisted-Pair Cable and Pin Assignments B-2
10BASE-T/100BASE-TX Pin Assignments B-2
Straight-Through Wiring B-4
Crossover Wiring B-4
1000BASE-T Pin Assignments B-5
1000BASE-T Cable Requirements B-6
Cable Testing for Existing Category 5 Cable B-6
Adjusting Existing Category 5 Cabling B-6
Console Port Pin Assignments B-7
DB-9 Port Pin Assignments B-7
Console Port to 9-Pin DTE Port on PC B-7
Console to 25-Pin DTE Port on PC B-8
Appendix C Specifications C-1
Physical Characteristics C-1
Base Unit C-1
Management Features C-3
Standards C-3
Compliances C-4
CE Mark C-4
Glossary
Index

Chapter 1

About This Guide

Audience

This guide is for system administrators with a working knowledge of network management.

You should be familiar with switching and networking concepts.

Nomenclature

This guide uses the following typographical conventions to show information:

Italichighlights the title of another publication and occasionally emphasizes a word or phrase.
codeshows text that must be entered exactly as it appears in this guide.

Note: emphasizes an important fact or calls your attention to a dependency.

How to Get Help

If you need assistance, Foundry Networks is committed to ensuring that your investment in our products remains cost-effective by offering a variety of support options.

Foundry Networks Technical Support

Foundry Networks technical support will ensure that the fast and easy access that you have come to expect from your Foundry Networks products will be maintained.

Web Access

Point your browser to the following URL:
http:/ /www.foundrynetworks.com.
Navigate to Services/Technical Support.
Click the Login button, then enter your user name and password to gain access to the Foundry support site.

E-mail Access

Technical requests can also be sent to the e-mail address:
support@foundrynet.com

Telephone Access

- 1.877.TURBOCALL (887.2622): United States
- 1.408.586.1881: Outside the United States

Warranty Coverage

Contact Foundry Networks using any of the methods listed above for information about the standard and extended warranties.

Related Publications

Refer to the Foundry EdgeIron User Guide for instructions on how to configure and manage the switch.

Chapter 2

About the Switch

Overview

This switch is an ideal solution for delivering Internet access to individual users in multi-dwelling or multi-tenant units (MDUs/ MTUs), such as apartment housing blocks, commercial buildings or hotels. This switch provides rate-limitable connections to individual users with secure port-to-port isolation between users - all with conventional Ethernet cabling and adapters. At an MDU/MTU site, up to 24 other switches can be cascaded from one switch, providing broadband Internet access for up to 24 individual users on each switch.

Figure 2-1. Front and Rear Panels

Switch Architecture

The switch contains 24 10/100 Mbps Fast Ethernet ports on the front panel. Each port can provide a dedicated link directly to an end-user PC, or be attached to another Ethernet switch/hub at the end-user's premises and used as a shared link. The switch completely eliminates the bottlenecks of dial-up internet access by offering a configurable bandwidth of up to 100 Mbps full duplex for each end-user connection. For all port connections, the switch's 8.8 Gbps bandwidth capacity is more than enough to handle even the most demanding environments.

Auto-negotiation is used to select the optimal transmission speed and communication mode for each connection. With store-and-forward switching and flow control, maximum data integrity is always maintained, even under heavy loading.

This switch includes two port: 1000BASE-SX and RJ-45. These ports allow users the flexibility to use either fiber or copper media.

The switch also supports a stacking module that can be installed into slot M1. The stacking module allows up to eight units to be linked together and managed from one unit using one IP address.

Management Options

This switch contains a comprehensive array of LEDs for "at-a-glance" monitoring of network and port status. It also includes a management agent that allows you to configure or monitor the switch using its embedded management software, or via SNMP applications. To manage the switch, you can make a direct connection to the RS-232 console port (out-of-band), or you can manage the switch through a network connection (in-band) using Telnet, the on-board Web agent, or Windows-based network management software.

The management agent provides a wide range of advanced performance-enhancing features. Port-based VLANs provide traffic security and efficient use of network bandwidth. QoS priority queueing ensures the minimum delay for moving real-time multimedia data through the switch. Flow control eliminates the loss of packets due to bottlenecks caused by port saturation. Port security is provided to filter unwanted traffic from the switch.

Some of the switch's advanced features are described below. For a detailed description, refer to the Foundry EdgeIron User Guide.

VLANs

This switch supports up to 255 VLANs. A Virtual LAN is a collection of network nodes that share the same collision domain regardless of their physical location or connection point in the network. By segmenting your network into VLANs, you can:

- Eliminate broadcast storms which severely degrade performance in a flat network.
- Simplify network management for node changes/moves by remotely configuring VLAN membership for any port, rather than having to manually change the node's physical connection.
- Provide data security by restricting all traffic to the originating VLAN, except where a connection is explicitly defined via the switch's routing service.

This switch supports Private VLANs as an extension of the common VLAN. Private VLANs can be used to provide port-based security and isolation between ports within a VLAN.

Private VLANs deliver per port security, requiring only one VLAN on every switch, not every port. This feature greatly
minimizes the total number of VLANs required. Private VLANs and normal VLANs can exist simultaneously in the same switch.

Multicast Switching

Specific multicast traffic can be assigned to its own VLAN to ensure that it does not interfere with normal network traffic and to guarantee real-time delivery by setting the required priority level for the designated VLAN. The switch uses IGMP Snooping.

Traffic Priority

This switch provides Quality of Service (QoS) by prioritizing each packet based on the required level of service, using four distinct categories with Weighted Round Robin queuing. It uses IEEE 802.1p and 802.1Q tags to prioritize incoming traffic based on input from the end-station application. These functions can be used to provide independent priorities for delay-sensitive data and best-effort data.

Description of Hardware

RJ-45 Ports

The switch base unit contains 24 10BASE-T/100BASE-TX RJ-45 ports. All of these ports support automatic MDI/MDI-X operation, so you can use straight-through cables for all network connections to PCs or servers, or to other switches or hubs. (See "10BASE-T/100BASE-TX Pin Assignments" on page -2.)

Each of these ports support IEEE 802.3x auto-negotiation, so the optimum transmission mode (half or full duplex), and data rate (10 or 100 Mbps) can be selected automatically, if this feature is also supported by the attached device. If a device connected to one of these ports does not support auto-negotiation, the correct speed will be sensed by the port, but the transmission mode will default to half duplex.

Descriptionof Hardware

Each port also supports auto-negotiation of flow control, so the switch can automatically prevent port buffers from becoming saturated.

Port Status LEDs

The base unit also includes a display panel for key system and port indications that simplify installation and network troubleshooting. The LEDs, which are located on the front panel for easy viewing, are shown below and described in the following tables.

Figure 2-2. Port Status LEDs

Port Status LEDs		
LED	Condition	Status
Base Unit Ports		
$1 \sim 24$ (Link/ Activity)	On/Flashing Amber	Port has established a valid 10 Mbps network connection. Flashing indicates activity.
	On/Flashing Green	Port has established a valid 100 Mbps network connection. Flashing indicates activity.
	Off	There is no valid link on the port.

Port Status LEDs		
LED	Condition	Status
Module Ports		
25,26		
(Link/ Activity)	On/Flashing Amber	Port has established a valid 10/100 Mbps network connection. Flashing indicates activity.
	On/Flashing Green	Port has established a valid 1000 Mbps network connection. Flashing indicates activity.
	Off	There is no valid link on the port.

Figure 2-3. System Status LEDs

System Status LEDs		
LED	Condition	Status
PWR	On Green	The unit's internal power supply is operating normally.
	On Amber	The unit's internal power supply has failed.
	Off	The unit has no power connected.

LED	Condition	
Diag	On Green	The system diagnostic test has completed successfully.
	Flashing Green	The system diagnostic test is in progress.
	On Amber	The system diagnostic test has detected a fault.
	N/A	This indicator is not currently implemented.
Stack	Flashing Amber	This indicator is not currently implemented.
	Green	An initial state of stacking configuration upon powering on.
	This switch is acting as the master unit in the stack.	
	Amber	This switch is acting as a slave unit in the stack.
	Flashing Green	When the user enters the light unit command in the CLI, the unit ID of each switch in the stack will be displayed by port LEDs 1 to 8.

Power Supply Receptacle

The power receptacle is located on the rear panel of the switch. The standard power receptacle is for the AC power cord.

Figure 2-4. Power Supply Receptacle

Features and Benefits

Connectivity

- 24 dual-speed ports for 10 or 100 Mbps Ethernet connections
- Auto-negotiation enables each RJ-45 port to automatically select the optimum communication mode (half or full duplex) for the attached device
- Independent RJ-45 ports with support for automatic MDI/ MDI-X
- Unshielded (UTP) cable supported on all RJ-45 ports: Category 3, 4 or 5 for 10 Mbps connections and Category 5 for 100 Mbps connections
- IEEE 802.3 Ethernet and 802.3u Fast Ethernet compliance ensures compatibility with standards-based hubs, network cards and switches from any vendor
- Provides stacking capability via a module with 1 Gbps stacking bandwidth. Up to 8 units can be stacked.
- Two $10 / 100 / 1000$ BASE-T auto-sensing Gigabit Ethernet switching ports that operate in combination with two Small Form Factor Pluggable (SFP) transceiver slots

Performance

- Transparent bridging
- Aggregate bandwidth up to 8.8 Gbps
- Switching Table with 8K MAC address entries
- Filtering and forwarding at line speed
- Desktop or rack-mountable

Management

- "At-a-glance" LEDs for easy troubleshooting
- Management agent:
- Supports Telnet, SNMP and Web-based interface
- Manages entire switch in-band or out-of-band
- Private VLAN function providing port-based security and isolation between ports
- VLAN Support with up to 255 groups, port-based or with 802.1Q VLAN tagging, and GVRP for automatic VLAN learning
- Quality of Service (QoS) supports four levels of priority and Weighted Round Robin
- Multicast Switching based on IGMP Snooping
- Port trunking supported for 2,3 or 4-port groups

Abouit the Swtah

Chapter 3

Network Planning

Introduction to Switching

A network switch allows simultaneous transmission of multiple packets via non-crossbar switching. This means that it can partition a network more efficiently than bridges or routers. The switch has, therefore, been recognized as one of the most important building blocks for today's networking technology.

When performance bottlenecks are caused by congestion at the network access point (such as the network card for a high-volume file server), the device experiencing congestion (server, power user or hub) can be attached directly to a switched port. And, by using full-duplex mode, the bandwidth of the dedicated segment can be doubled to maximize throughput.

When networks are based on repeater (hub) technology, the maximum distance between end stations is limited. For Ethernet, there may be up to four hubs between any pair of stations; for Fast Ethernet, the maximum is two. This is known as the hop count. However, a switch turns the hop count back to zero. So subdividing the network into smaller and more manageable segments, and linking them to the larger network by means of a switch, removes this limitation.

A switch can be easily configured in any Ethernet or Fast
Ethernet network to significantly boost bandwidth while using conventional cabling and network cards.

Application Example

This switch is specifically designed for delivering Internet access to individual users in multi-dwelling or multi-tenant units (MDUs/MTUs), such as apartment housing blocks, commercial buildings or hotels. Some features of this application are described below.

Connectivity Rules

When adding hubs (repeaters) to your network, please follow the connectivity rules listed below for Ethernet, Fast Ethernet, or Gigabit Ethernet. However, note that because switches break up the path for connected devices into separate collision domains, you should not include the switch or connected cabling in your calculations for cascade length involving other devices.

1000 Mbps Gigabit Ethernet Collision Domain

Maximum Fiber Optic Cable Distance for 1000BASE-SX

Fiber Size	Fiber Bandwidth	Maximum Cable Length
$62.5 / 125$ micron	$160 \mathrm{MHz} / \mathrm{km}$	$2-220 \mathrm{~m}(7-722 \mathrm{ft})$
	$200 \mathrm{MHz} / \mathrm{km}$	$2-275 \mathrm{~m}(7-902 \mathrm{ft})$
$50 / 125$ micron	$400 \mathrm{MHz} / \mathrm{km}$	$2-500 \mathrm{~m}(7-1641 \mathrm{ft})$
	$500 \mathrm{MHz} / \mathrm{km}$	$2-550 \mathrm{~m}(7-1805 \mathrm{ft})$

Maximum Fiber Optic Cable Distance for 1000BASE-LX

Fiber Size	Fiber Bandwidth	Maximum Cable Length
$9 / 125$ micron	N/A	$2 \mathrm{~m}-5 \mathrm{~km}(7-16404 \mathrm{ft})$

Maximum Cable Distance for 1000BASE-T

Type	Connector	Maximum Cable Length
Cat. 5, 5e, or 6 100-ohm UTP	RJ-45	$100 \mathrm{~m} \mathrm{(328ft)}$

Maximum Cable Distance for 10/100BASE

Type	Cable Type	Maximum Cable Length
10BASE-T	Twisted Pair, Categories $3,4,5$	$100 \mathrm{~m}(328 \mathrm{ft})$
100BASE-TX	Category 5 100-ohm UTP or STP	$100 \mathrm{~m}(328 \mathrm{ft})$

Application Notes

1. Full-duplex operation only applies to point-to-point access (such as when a switch is attached to a workstation, server or another switch). When the switch is connected to a hub, both devices must operate in half-duplex mode.
2. When a switch is connected to a hub or any kind of shared media, you may want to turn off back pressure flow control to prevent jamming packets from being propagated throughout the hub.
3. As a general rule the length of fiber optic cable for a single switched link should not exceed:

- 1000BASE-SX/LX: 550 m (1805 ft) for multimode fiber or $5 \mathrm{~km}(16404 \mathrm{ft})$ for single-mode fiber.

However, power budget constraints must also be considered when calculating the maximum cable length for your specific environment.

Chapter 4

Installing the Switch

Selecting a Site

Switch units can be mounted in a standard 19-inch equipment rack or on a flat surface. Be sure to follow the guidelines below when choosing a location.

- The site should:
- be at the center of all the devices you want to link and near a power outlet.
- be able to maintain its temperature within 0 to $50^{\circ} \mathrm{C}(32$ to $122{ }^{\circ} \mathrm{F}$) and its humidity within 10% to 90%, non-condensing
- provide adequate space (approximately two inches) on all sides for proper air flow
- be accessible for installing, cabling and maintaining the devices
- allow the status LEDs to be clearly visible
- Make sure twisted-pair cable is always routed away from power lines, fluorescent lighting fixtures and other sources of electrical interference, such as radios, transmitters, etc.
- Make sure that a separate grounded power outlet that provides 100 to $240 \mathrm{VAC}, 50$ to 60 Hz , is within 2.44 m (8 feet) of each device and is powered from an independent circuit breaker. As with any equipment, using a filter or surge
suppressor is recommended.

Equipment Checklist

After unpacking the switch, check the contents to be sure you have received all the components. Then, before beginning the installation, be sure you have all other necessary installation equipment.

Package Contents

- 24-Port Fast Ethernet Switch
- Four adhesive foot pads
- Bracket Mounting Kit containing two brackets and four screws for attaching the brackets to the switch
- Power Cord
- RS-232 console cable
- Stacking Cable
- CD-ROM containing installation guide and user guide

Optional Rack-Mounting Equipment

If you plan to rack-mount the switch, be sure to have the following equipment available:

- Four mounting screws for each device you plan to install in a rack-these are not included
- A screwdriver (Phillips or flathead, depending on the type of screws used)

Mounting

A switch unit can be mounted in a standard 19-inch equipment rack or on a desktop or shelf. Mounting instructions for each type of site follow.

Rack Mounting

Before rack mounting the switch, pay particular attention to the following factors:

- Temperature: Since the temperature within a rack assembly may be higher than the ambient room temperature, check that the rack-environment temperature is within the specified operating temperature range. (See page -2.)
- Mechanical Loading: Do not place any equipment on top of a rack-mounted unit
- Circuit Overloading: Be sure that the supply circuit to the rack assembly is not overloaded.
- Grounding: Rack-mounted equipment should be properly grounded. Particular attention should be given to supply connections other than direct connections to the mains.

To rack-mount devices:

1. Attach the brackets to the device using the screws provided in the Bracket Mounting Kit.

Figure 4-1. Attaching the Brackets

2. Mount the device in the rack, using four rack-mounting screws (not provided).

Figure 4-2. Installing the Switch in a Rack

3. If installing a single switch only, turn to "Connecting to a Power Source" at the end of this chapter.
4. If installing multiple switches, mount them in the rack, one below the other, in any order.

Desktop or Shelf Mounting

1. Attach the four adhesive feet to the bottom of the first switch.

Figure 4-3. Attaching the Adhesive Feet

2. Set the device on a flat surface near an AC power source, making sure there are at least two inches of space on all sides for proper air flow.
3. If installing a single switch only, go to "Connecting to a Power Source" at the end of this chapter.
4. If installing multiple switches, attach four adhesive feet to each one. Place each device squarely on top of the one below, in any order.

Connecting to a Power Source

To connect a device to a power source:

1. Insert the power cable plug directly into the receptacle located at the back of the device.

Instailing the SWTCH

Figure 4-4. Power Receptacle

2. Plug the other end of the cable into a grounded, 3-pin socket.

Note: For International use, you may need to change the AC line cord. You must use a line cord set that has been approved for the receptacle type in your country.
3. Check the front-panel LEDs as the device is powered on to be sure the Power LED is lit. If not, check that the power cable is correctly plugged in.

Chapter 5

Making Network

 Connections
Connecting Network Devices

The switch may be connected to 10 or 100 Mbps network cards in PCs and servers, as well as to Ethernet and Fast Ethernet hubs and switches. It may also be connected to remote devices using the optional fiber optic modules.

Twisted-Pair Devices

Each device requires a shielded or unshielded twisted-pair (STP or UTP) cable with RJ-45 connectors at both ends. For 1000BASE-T Category 5 or 5e cable is required, for 100BASE-TX connections, Category 5 cable is required; for 10BASE-T, Category 3,4 or 5 cable can be used.

Cabling Guidelines

A twisted-pair connection between two ports must have a crossover of the transmit and receive wires to be able to function. This crossover can be implemented in either of the ports, or in the cable connecting them.

Network card ports in PCs and servers do not contain an internal wiring crossover, these are known as straight-through (MDI) ports. Therefore, most switch and hub ports implement a built-in

Making Nethork Connections

crossover - known as fixed crossover (MDI-X) ports - so that they can be connected to PCs and servers using standard straight-through cable. Some switches and hubs also have an MDI port, so that they can connect to another switch's/hub's MDI-X port using straight-through cable. To connect between two switches/hubs that only have fixed MDI-X ports, the wiring crossover must be implemented in the cable - known as a crossover cable.

The RJ-45 ports on the switch base unit support automatic MDI/ MDI-X operation, which means that they automatically detect the wiring in the link and configure as MDI or MDI-X accordingly. So for these ports, you can use standard straight-through twisted-pair cables to connect to any other network device (PCs, servers, switches, hubs, or routers). However, note that auto-negotiation must be enabled on these ports for automatic wiring configuration to function properly.

Connecting to PCs, Servers, Hubs and Switches

Caution: Do not plug a phone jack connector into an RJ-45 port. This will damage the switch. Use only twisted-pair cables with RJ- 45 connectors that conform to FCC standards.

1. Attach one end of a twisted-pair cable segment to the device's RJ-45 connector.

Figure 5-1. Making Twisted-Pair Connections

2. If the device is a PC card and the switch is in the wiring closet, attach the other end of the cable segment to a modular wall outlet that is connected to the wiring closet (see "Wiring Closet Connections" on the next page). Otherwise, attach the other end to an available port on the switch.
3. Make sure each twisted pair cable does not exceed 100 meters $(328 \mathrm{ft})$ in length.

Note: When connected to a shared collision domain (such as a hub with multiple workstations), switch ports must be set to half-duplex mode.
4. As each connection is made, the green Link LED (on the switch) corresponding to each port will light to indicate that the connection is valid.

Wiring Closet Connections

Today, the punch-down block is an integral part of many of the newer equipment racks. It is actually part of the patch panel.
Instructions for making connections in the wiring closet with this type of equipment follows.

Making Nethork Connections

1. Attach one end of a patch cable to an available port on the switch, and the other end to the patch panel.
2. If not already in place, attach one end of a cable segment to the back of the patch panel where the punch-down block is located, and the other end to a modular wall outlet.
3. Label the cables to simplify future troubleshooting.

Figure 5-2. Wiring Closet Connections

Fiber Optic Devices

An optional slide-in 1000BASE-SX, 1000BASE-LX, or 1000BASE-X transceiver may be used for backbone and long distance connections, or for ISP (Internet) connections. A 1000BASE-SX, 1000BASE-LX, or 1000BASE-X transceiver may also be for connecting to a high-speed server.

Each single-mode fiber optic port requires 9/125 micron multimode fiber optic cabling with an SC connector at both ends. Each multimode fiber optic port requires $50 / 125$ or $62.5 / 125$ micron multimode fiber optic cabling with an SC connector at both ends.

Warning: This switch uses lasers to transmit signals over fiber optic cable. The lasers are compliant with the requirements of a Class 1 Laser Product and are inherently eye safe in normal operation. However, you should never look directly at a transmit port when it is powered on.

1. Remove and keep the SC port's rubber plug. When not connected to a fiber cable, the rubber plug should be replaced to protect the optics.
2. Check that the fiber terminators are clean. You can clean the cable plugs by wiping them gently with a clean tissue or cotton ball moistened with a little ethanol. Dirty fiber terminators on fiber optic cables will impair the quality of the light transmitted through the cable and lead to degraded performance on the port.
3. Connect one end of the cable to the SC port on the switch and the other end to the SC port on the other device. Since SC connectors are keyed, the cable can be attached in only one orientation.

Making Nethork Connections

Figure 5-3. Making SC Port Connections

4. As a connection is made, check the Activity LED on the switch's front panel for the corresponding module to be sure that the connection is valid.

Troubleshooting

Diagnosing Switch Indicators

Troubleshooting Chart	
Symptom	Action
PWR LED is Off	- Internal power supply is disconnected. - Check connections between the switch, the power cord, the wall outlet.
PWR LED is Amber	- Internal power supply has failed. - Contact your local dealer for assistance.
Link LED is Off	- Verify that the switch and attached device are powered on.
-Be sure the cable is plugged into both the switch and corresponding device.	
- If the switch is installed in a rack, check	
the connections to the punch-down block	
and patch panel.	
- Verify that the proper cable type is used	
and its length does not exceed specified	
limits.	
- Check the adapter on the attached device	
and cable connections for possible	
defects. Replace the defective adapter or	
cable if necessary.	

Power and Cooling Problems

If the power indicator does not turn on when the power cord is plugged in, you may have a problem with the power outlet, power cord, or internal power supply. However, if the unit powers off after running for a while, check for loose power connections, power losses or surges at the power outlet, and verify that the fans on the unit are unobstructed and running prior to shutdown. If you still cannot isolate the problem, then the internal power supply may be defective.

Installation

Verify that all system components have been properly installed. If one or more components appear to be malfunctioning (such as the power cord or network cabling), test them in an alternate environment where you are sure that all the other components are functioning properly.

In-Band Access

You can access the management agent in the switch from anywhere within the attached network using Telnet, a Web browser, or other network management software. However, you must first configure the switch with a valid IP address, subnet mask, and default gateway. If you have trouble establishing a link to the management agent, check to see if you have a valid network connection. Then verify that you entered the correct IP address. Also, be sure the port through which you are connecting to the switch has not been disabled. If it has not been disabled, then check the network cabling that runs between your remote location and the switch.

Note: The management agent accepts up to four simultaneous Telnet sessions. If the maximum number of sessions already exists, an additional Telnet connection will not be able to \log into the system.

TROUBLESHOOIING

Appendix B

Cables

Specifications

Cable Types and Specifications			
Cable	Type	Max. Length	Connector
10BASE-T	Cat. 3, 4, 5 100-ohm UTP	$100 \mathrm{~m}(328 \mathrm{ft})$	RJ-45
100BASE-TX	Cat. 5 100-ohm UTP	$100 \mathrm{~m}(328 \mathrm{ft})$	RJ-45
1000BASE-SX	$50 / 125$ or 62.5/125 micron core MMF	See the following table	SC
1000BASE-LX	9/125 micron SMF	$5 \mathrm{~km} \mathrm{(3.12} \mathrm{miles)}$	SC
1000BASE-T	Cat. 5, 5e 100-ohm UTP	$100 \mathrm{~m} \mathrm{(328ft)}$	RJ-45

1000BASE-SX Fiber Specifications		
Fiber Diameter	Fiber Bandwidth	Maximum Cable Length
$62.5 / 125 ~ m i c r o n ~$ MMF	$160 \mathrm{MHz} / \mathrm{km}$	$2-220 \mathrm{~m}(7-722 \mathrm{ft})$
	$200 \mathrm{MHz} / \mathrm{km}$	$2-275 \mathrm{~m}(7-902 \mathrm{ft})$
$50 / 125$ micron MMF	$400 \mathrm{MHz} / \mathrm{km}$	$2-500 \mathrm{~m}(7-1641 \mathrm{ft})$
	$500 \mathrm{MHz} / \mathrm{km}$	$2-550 \mathrm{~m}(7-1805 \mathrm{ft})$

Cables

Twisted-Pair Cable and Pin Assignments

Caution: DO NOT plug a phone jack connector into any RJ-45 port. Use only twisted-pair cables with RJ-45 connectors that conform with FCC standards.

For 10BASE-T/100BASE-TX connections, a twisted-pair cable must have two pairs of wires. Each wire pair is identified by two different colors. For example, one wire might be red and the other, red with white stripes. Also, an RJ-45 connector must be attached to both ends of the cable.

Caution: Each wire pair must be attached to the RJ-45 connectors in a specific orientation. (See "Cabling Guidelines" on page -1 for an explanation.)

The figure below illustrates how the pins on the RJ-45 connector are numbered. Be sure to hold the connectors in the same orientation when attaching the wires to the pins.

10BASE-T/100BASE-TX Pin Assignments

Use unshielded twisted-pair (UTP) or shielded twisted-pair (STP) cable for RJ-45 connections: 100-ohm Category 3, 4 or 5 cable for 10 Mbps connections or 100 -ohm Category 5 cable for 100 Mbps connections. Also be sure that the length of any twisted-pair connection does not exceed 100 meters (328 feet).

The RJ-45 ports on the switch base unit support automatic MDI/ MDI-X operation, you can use straight-through cables for all

Twisted-Pair Cable and Pin Assignaenis

network connections to PCs or servers, or to other switches or hubs. The RJ- 45 port on the 100BASE-TX module is an MDI-X port, which allows you to use straight-through cable for connections to PCs and servers. In straight-through cable, pins 1, 2,3 , and 6 , at one end of the cable, are connected straight through to pins $1,2,3$, and 6 at the other end of the cable. For connection to hubs or switches which have MDI-X ports, a crossover cable must be used.

Pin	MDI-X Signal Name	MDI Signal Name
1	Receive Data plus (RD+)	Transmit Data plus (TD+)
2	Receive Data minus (RD-)	Transmit Data minus (TD-)
3	Transmit Data plus (TD+)	Receive Data plus (RD+)
6	Transmit Data minus (TD-)	Receive Data minus (RD-)
$4,5,7,8$	Not used	Not used

Note: The "+" and "-" signs represent the polarity of the wires that make up each wire pair.

Cables

Straight-Through Wiring

If the twisted-pair cable is to join two ports and only one of the ports has an internal crossover (MDI-X), the two pairs of wires must be straight-through.

Straight-Through RJ-45 Pin As-					
signments		$	$	End 1	1 (TD+)
:---	:---				
1 (RD+)	2 (TD-)				
2 (RD-)	3 (RD+)				
3 (TD+)	6 (RD-)				
6 (TD-)					

Crossover Wiring

If the twisted-pair cable is to join two ports and either both ports are labeled with an " X " (MDI- X) or neither port is labeled with an " X " (MDI), a crossover must be implemented in the wiring.

Crossover RJ-45 Pin Assign- ments	
End 1	End 2
1 (TD+)	3 (RD+)
2 (TD-)	6 (RD-)
3 (RD+)	1 (TD+)
6 (RD-)	2 (TD-)

1000BASE-T Pin Assignments

The table below shows the 1000BASE-T MDI and MDI-X port pinouts. These ports require that all four pairs of wires be connected. Note that for 1000BASE-T operation, all four pairs of wires are used for both transmit and receive.

Use 100 -ohm Category 5 or 5 e unshielded twisted-pair (UTP) or shielded twisted-pair (STP) cable for 1000BASE-T connections. Also be sure that the length of any twisted-pair connection does not exceed 100 meters (328 feet).

Pi \mathbf{n}	MDI Signal Name	MDI-X Signal Name
1	Transmit Data plus (TD1+)	Transmit Data plus (TD2 +)
2	Receive Data minus (RD1-)	Receive Data minus (RD2-)
3	Transmit Data plus (TD2+)	Transmit Data plus (TD1+)
4	Transmit Data plus (TD3+)	Transmit Data plus (TD4+)
5	Receive Data minus (RD3-)	Receive Data minus (RD4-)
6	Receive Data minus (RD2-)	Receive Data minus (RD1-)
7	Transmit Data plus (TD4+)	Receive Data minus (RD3+)
8	Receive Data minus (RD4-)	Receive Data minus (RD3-)

1000BASE-T Cable Requirements

All Category 5 UTP cables that are used for 100BASE-TX connections should also work for 1000BASE-T, providing that all four wire pairs are connected. However, it is recommended that for all critical connections, or any new cable installations, Category 5e (enhanced Category 5) or 6 cable should be used. The Category 5 e and 6 specifications include test parameters that are only recommendations for Category 5 . Therefore, the first step in preparing existing Category 5 cabling for running 1000BASE-T is a simple test of the cable installation to be sure that it complies with the IEEE 802.3ab standards.

Cable Testing for Existing Category 5 Cable

Installed Category 5 cabling must pass tests for Attenuation, Near-End Crosstalk (NEXT), and Far-End Crosstalk (FEXT). This cable testing information is specified in the ANSI/TIA/ EIA-TSB-67 standard. Additionally, cables must also pass test parameters for Return Loss and Equal-Level Far-End Crosstalk (ELFEXT). These tests are specified in the ANSI/TIA/ EIA-TSB-95 Bulletin, "The Additional Transmission Performance Guidelines for 100 Ohm 4-Pair Category 5 Cabling."

Note that when testing your cable installation, be sure to include all patch cables between switches and end devices.

Adjusting Existing Category 5 Cabling

If your existing Category 5 installation does not meet one of the test parameters for 1000BASE-T, there are basically three measures that can be applied to try to correct the problem:

1. Replace any Category 5 patch cables with high-performance Category 5e or 6 cables.
2. Reduce the number of connectors used in the link.
3. Reconnect some of the connectors in the link.

Console Port Pin Assignments

The DB-9 serial port on the switch's front panel is used to connect to the switch for out-of-band console configuration. The on-board menu-driven configuration program can be accessed from a terminal or a PC running a terminal emulation program. The pin assignments used to connect to the serial port are provided in the following tables.

Pin 1

Pin 9

DB-9 Port Pin Assignments

EIA Circ uit	CCI TT Sign al	Description	Switc h's DB9 DTE Pin \#	PC DB9 DTE Pin \#	PC DB25 DTE Pin \#
BB	104	RxD (Received Data)	2	2	3
BA	103	TxD (Transmitted Data)	3	3	2
AB	102	SG (Signal Ground)	5	5	7

No other pins are used.

Console Port to 9-Pin DTE Port on PC

Switch's 9-Pin Serial Port	Null Modem	$\begin{aligned} & \text { PC's } \\ & \text { 9-Pin } \\ & \text { DTE } \\ & \text { Port } \end{aligned}$
2 RXD	<--------- TXD ------------	3 TXD
3 TXD	----------- RXD ---------->	2 RXD
5 SGND	----------- SGND ----------	5 SGND

No other pins are used.

Console to 25-Pin DTE Port on PC

Switch's 9-Pin Serial Port	Null Modem	$\begin{gathered} \text { PC's } \\ \text { 25-Pin } \\ \text { DTE } \\ \text { Port } \end{gathered}$
2 RXD	<--------- TXD ------------	2 TXD
3 TXD	----------- RXD ---------->	3 RXD
5 SGND	----------- SGND ----------	7 SGND

No other pins are used.

Appendix C

Specifications

Physical Characteristics

Base Unit

Ports
24 10BASE-T/100BASE-TX, with auto-negotiation
2 slots for optional 1000BASE-T, 1000BASE-SX,1000BASE-LX, and 1000BASE-X GBIC modules

Network Interface
10BASE-T: RJ-45 (100-ohm, UTP cable; Categories 3, 4, 5)
100BASE-TX:RJ-45 (100-ohm, UTP cable; Category 5)
Ports 1-24: RJ-45 connectors, auto MDI/MDI-X

Communication Speed

10 and 100 Mbps
Communication Mode
Full and half duplex
Buffer Architecture
64 Mbyte per system
Aggregate Bandwidth
8.8 Gbps

Switching Database

8 K MAC address entries

LEDs

System: PWR, Diag, Stack
Ports: Link/Activity

Weight

$3.08 \mathrm{~kg}(6 \mathrm{lb} 13 \mathrm{oz})$
Size
$44 \times 32.4 \times 4.3 \mathrm{~cm}(17.32 \times 12.8 \times 1.69 \mathrm{in}$.

Temperature

Operating: 0 to $50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Storage: -40 to $70^{\circ} \mathrm{C}\left(-40\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$

Humidity

Operating: 10% to 90%

Power Supply

Internal, auto-ranging transformer: 100 to 240 VAC, 47 to 63 Hz

Power Consumption

60 Watts maximum

Heat Dissipation

205 BTU/hr maximum
© 2003 Foundry Networks, Inc.

Maximum Current
5.0 A @ 12 V

Management Features

In-Band Management

Telnet, or SNMP manager
Out-of-Band Management
RS-232 DB-9 console port
Software Loading
TFTP in-band, or XModem out-of-band
MIB Support
MIB II (RFC1213), Bridge MIB (RFC 1493, without Static Table)

Standards

IEEE 802.3 Ethernet, IEEE 802.3u Fast Ethernet
IEEE 802.1p priority tags
IEEE 802.3ac VLAN tagging
IEEE 802.1D (Bridging)
IEEE 802.3ad Link Aggregation
IEEE 802.1Q VLAN Bridge Management

IEEE 802.1x RADIUS user authentication
IEEE 802.3x full-duplex flow control
ISO/IEC 8802-3
UDP (RFC 768), IP (RFC 791), TCP (RFC793), TFTP (RFC 783), TELNET (RFC 783), SNMP (RFC 1157), MIB II (RFC 1213), Traps (RFC 1215), Bridge MIB (RFC 1493), RMON (RFC 1757), HTML (RFC 1866), HTTP (RFC 2068), RADIUS (RFC 2618)

Compliances

CE Mark

Emissions

FCC Class A
Industry Canada Class A
EN55022 (CISPR 22) Class A
EN 61000-3-2/3
VCCI Class A
C-Tick - AS/NZS 3548 (1995) Class A
Immunity
EN 61000-4-2/3/4/5/6/8/11

Safety

CSA/NRTL (CSA 22.2.950 \& UL 1950)
TUV/GS (EN60950)

GLOSSARY

10BASE-T

IEEE 802.3 specification for 10 Mbps Ethernet over two pairs of Category 3, 4, or 5 UTP cable.

100BASE-TX

IEEE 802.3 u specification for 100 Mbps Fast Ethernet over two pairs of Category 5 UTP cable.

1000BASE-LX

IEEE 802.3 z specification for Gigabit Ethernet over one strand of 9/125 micron core fiber cable.

1000BASE-LH

Gigabit Ethernet over two strands of 9/125 micron core fiber cable.

1000BASE-SX

IEEE 802.3 z specification for Gigabit Ethernet over two strands of $50 / 125$ or $62.5 / 125$ micron core fiber cable.

1000BASE-T

IEEE 802.3ab specification for Gigabit Ethernet over two pairs of Category 5, 5e 100-ohm UTP cable.

Auto-Negotiation

Signalling method allowing each node to select its optimum operational mode (e.g., 10 Mbps or 100 Mbps and half or full duplex) based on the capabilities of the node to which it is connected.

Bandwidth

The difference between the highest and lowest frequencies available for network signals. Also synonymous with wire speed, the actual speed of the data transmission along the cable.

Collision

A condition in which packets transmitted over the cable interfere with each other. Their interference makes both signals unintelligible.

Collision Domain

Single CSMA/CD LAN segment.

CSMA/CD

Carrier Sense Multiple Access/Collision Detect is the communication method employed by Ethernet and Fast Ethernet.

End Station

A workstation, server, or other device that does not act as a network interconnection.

Ethernet

A network communication system developed and standardized by DEC, Intel, and Xerox, using baseband transmission, CSMA/ CD access, logical bus topology, and coaxial cable. The successor IEEE 802.3 standard provides for integration into the OSI model and extends the physical layer and media with repeaters and implementations that operate on fiber, thin coax and twisted-pair cable.

Fast Ethernet

A 100 Mbps network communication system based on Ethernet and the CSMA/CD access method.

Fast Ethernet Switch

Device that provides a full 100 Mbps bandwidth (or either 10 or 100 Mbps bandwidth with Auto-Negotiation) to each port (LAN segment).

Full Duplex

Transmission method that allows switch and network card to transmit and receive concurrently, effectively doubling the bandwidth of that link.

Gigabit Ethernet

A 1000 Mbps network communication system based on Ethernet and the CSMA/CD access method.

IEEE 802.3

Defines carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications.

IEEE 802.3ab

Defines CSMA/CD access method and physical layer specifications for 1000BASE-T Fast Ethernet.

IEEE 802.3u

Defines CSMA/CD access method and physical layer specifications for 100BASE-TX Fast Ethernet.

IEEE 802.3x

Defines Ethernet frame start/stop requests and timers used for flow control on full-duplex links.

IEEE 802.3z

Defines CSMA/CD access method and physical layer specifications for 1000BASE Gigabit Ethernet.

LAN Segment

Separate LAN or collision domain.

LED

Light emitting diode used for monitoring a device or network condition.

Link Segment

Length of twisted-pair or fiber cable joining a pair of repeaters or a repeater and a PC.

Local Area Network (LAN)

A group of interconnected computer and support devices.
Media Access Control (MAC)
A portion of the networking protocol that governs access to the transmission medium, facilitating the exchange of data between network nodes.

MIB

An acronym for Management Information Base. It is a set of database objects that contains information about the device.

Network Diameter

Wire distance between two end stations in the same collision domain.

RJ-45 Connector

A connector for twisted-pair wiring.

Switched Ports

Ports that are on separate collision domains or LAN segments.

Transmission Control Protocol/Internet Protocol (TCP/IP)

Protocol suite that includes TCP as the primary transport protocol, and IP as the network layer protocol.

UTP

Unshielded twisted-pair cable.

Index

Symbols

. 2-4

Numerics

1000 Mbps connectivity rules 3-2
1000BASE-LX
fiber cable lengths 3-2
1000BASE-SX
fiber cable lengths 3-2
1000BASE-T
cable lengths 3-3
100BASE-TX
cable lengths 3-3
ports 2-4
10BASE-T
cable lengths 3-3
ports 2-4
A
address table size C-2
adhesive feet, attaching 4-5
air flow requirements 4-1
application example 3-2
B
brackets, attaching 4-4
buffer size C-1
C
cable
lengths 3-2, 3-3
specifications $\mathrm{B}-1$
cleaning fiber terminators 5-5
compliances
EMC C-4
safety C-4
connectivity rules
1000 Mbps 3-2
console port
pin assignments B-7
contents of package 4-2
cooling problems A-2
cord sets, international 4-6
crossover port 5-2

D

desktop mounting 4-4
device connections 5-1

E

electrical interference, avoiding 4-1
equipment checklist 4-2
features $\mathrm{C}-3$
management 2-9
switch 2-8
fiber cables 5-5
full-duplex connectivity 3-1

G

Gigabit Ethernet cable lengths 3-2
grounding for racks 4-3
I
indicators, LED 2-5
installation
connecting devices to the
switch 5-2
desktop or shelf
mounting 4-4
port connections 5-1, 5-5
power requirements 4-1
problems A-2
rack mounting 4-3
site requirements 4-1
wiring closet
connections 5-3

L

laser safety 5-5
LED indicators
Power 2-6
problems A-1
location requirements 4-1
M
management
agent 2-2
features 2-9, C-3
out-of-band 2-2
SNMP 2-2
Web-based 2-2
MDI-X port 5-2
MIB support C-3
modules
100BASE-TX C-4
slide-in C-4
mounting the switch
in a rack 4-3
on a desktop or shelf 4-4
multicast switching
IGMP Snooping 2-4
multimode fiber optic
cables 5-5

N

network
connections 5-1, 5-5
examples 3-2
O
optional modules
specifications C-4
out-of-band management 2-2

P

package contents 4-2
password
support 1-2
pin assignments B-2
console port B-7
DB-9 B-7
port saturation 2-3
ports, connecting to 5-1, 5-5
power, connecting to $4-6$
problems,
troubleshooting A-1

Q

QoS 2-3

R

rack mounting 4-3
rear panel receptacles 2-7
RJ-45 ports
connections 5-1
description 2-4
pinouts B-5
rubber foot pads,
attaching 4-5

S

SC port connections 5-5
screws for rack mounting 4-2
single-mode fiber optic
cables 5-5
site selelction 4-1
SNMP agent 2-2
specifications
compliances C-4
environmental C-2
physical C-1
power C-2
standards
compliance $\mathrm{C}-4$
IEEE C-3
status LEDs 2-5
Support, Technical 1-2
surge suppressor, using 4-1
switch architecture 2-2
switching, introduction to 3-1

T

tags, priority 2-4
Technical Support 1-2
e-mail 1-2
telephone 1-2
Web 1-2
Telnet A-3
temperature within a rack 4-3
troubleshooting
in-band access A-2
power and cooling
problems A-2
switch indicators A-1
twisted-pair connections 5-1
V
VLANs 2-3
W
Web-based management 2-2
Weighted Round Robin
Queuing 2-4

